In situ monitoring of cellulase activity by microgravimetry with a quartz crystal microbalance.
نویسندگان
چکیده
Quartz crystal microgravimetry (QCM) was used to investigate the interactions between cellulase enzymes and model cellulose substrates. The substrates consisted of thin films of cellulose that were spin-coated onto polyvinylamine (PVAm) precoated quartz crystal sensors carrying conductive gold surfaces. In QCM the quartz crystals are piezoelectrically driven and the frequency and dissipation shifts allow monitoring of substrate hydrolysis at various temperatures and enzyme concentrations in situ and in real time. The changes in frequency of cellulose-coated quartz resonators during their incubation in cellulase solutions were related to contributions from the liquid phase properties, the adsorptions of cellulase enzymes, and the hydrolysis of the substrate. Cellulase adsorption was found to be nonspecific and irreversible on gold-, PVAm-, and cellulose-coated quartz crystal sensors. The contribution to frequency shifts due to the bulk fluid properties of the cellulase solutions (at concentrations lower than 0.5 mg/mL) was minimal compared to the frequency shifts produced by cellulase binding. The maximum frequency decreases were fitted to a Langmuir model. The adsorption constant and the maximum adsorption were estimated by the fitting parameters of this model. The hydrolysis process was modeled by using a dose-response model that was then used to estimate the maximum hydrolysis rate, to compare the relative effects of temperature on adsorption and hydrolysis rate, and to obtain the apparent activation energy of cellulose hydrolysis. The hydrolysis rate increased with incubation temperature while apparent adsorption decreased. The apparent activation energy for the hydrolysis of the cellulose films employed was calculated to be 37 kJ/mol.
منابع مشابه
Quantification of cellulase activity using the quartz crystal microbalance technique.
The development of more efficient utilization of biomass has received increased attention in recent years. Cellulases play an important role in processing biomass through advanced biotechnological approaches. Both the development and the application of cellulases require an understanding of the activities of these enzymes. A new method to determine the activity of cellulase has been developed u...
متن کاملMeasurement of Cellulase Activity with Piezoelectric Resonators
We examined the dynamics of cellulase binding and activity on thin films of cellulose by using a piezoelectric sensing device (Quartz Crystal Microbalance with Dissipation monitoring, QCM-D). Upon exposure of the cellulose film to enzyme mixtures, a reduction in the sensor’s frequency due to molecular binding is observed. Thereafter the frequency increases due to the loss of effective mass caus...
متن کاملElectrochemical quartz crystal microbalance study of polyelectrolyte film growth under anodic conditions
Coating hard materials such as Pt with soft polymers like poly-L-lysine is a well-established technique for increasing electrode biocompatibility. We have combined quartz crystal microgravimetry with dissipation with electrochemistry (EQCM-D) to study the deposition of PLL onto Pt electrodes under anodic potentials. Our results confirm the change in film growth over time previously reported by ...
متن کاملGeneric method for attaching biomolecules via avidin-biotin complexes immobilized on films of regenerated and nanofibrillar cellulose.
We investigated the adsorption and chemical conjugation of avidin and its deglycosylated form, neutravidin, on films of regenerated and nanofibrillar cellulose. The dynamics and extent of biomolecular attachment were monitored in situ by quartz crystal microbalance microgravimetry and ex situ via surface analyses with atomic force microscopy and X-ray photoelectron spectroscopy. The installatio...
متن کاملCellulase Activity on Thin Films of Cellulose by QCM and SPR
We monitored the enzymatic hydrolysis on thin films of cellulose, in situ and real time by using a piezoelectric sensing device (Quartz Crystal Microbalance, QCM) and Surface Plasmon Resonance (SPR). Cellulose thin films were deposited on piezoelectric resonators using spin coating technique. Films of different crystallinity were also prepared by using self assembly of cellulose-thiol derivativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 44 شماره
صفحات -
تاریخ انتشار 2009